5 research outputs found

    Nanomechanical Photothermal Near Infrared Spectromicroscopy of Individual Nanorods

    Full text link
    Understanding light-matter interaction at the nanoscale requires probing the optical properties of matter at the individual nano-absorber level. To this end, we have developed a nanomechanical photothermal sensing platform that can be used as a full spectromicroscopy tool for single molecule and single particle analysis. As a demonstration, the absorption cross-section of individual gold nanorods is resolved from the spectroscopic and polarization standpoint. By exploiting the capabilities of nanomechanical photothermal spectromicroscopy, the longitudinal localized surface plasmon resonance (LSPR) in the NIR range is unravelled and quantitatively characterized. The polarization features of the transversal surface plasmon resonance (TSPR) in the VIS range are also analyzed. The measurements are compared with the finite element method (FEM), elucidating the role played by electron-surface and bulk scattering in these plasmonic nanostructures, as well as the interaction between the nano-absorber and the nanoresonator, ultimately resulting in absorption strength modulation. Finally, a comprehensive comparison is conducted, evaluating the signal-to-noise ratio of nanomechanical photothermal spectromicroscopy against other cutting-edge single molecule and particle spectroscopy techniques. This analysis highlights the remarkable potential of nanomechanical photothermal spectromicroscopy due to its exceptional sensitivity

    Nanomechanical absorption spectroscopy of 2D materials with femtowatt sensitivity

    Get PDF
    Nanomechanical spectroscopy (NMS) is a recently developed approach to determine optical absorption spectra of nanoscale materials via mechanical measurements. It is based on measuring changes in the resonance frequency of a membrane resonator vs. the photon energy of incoming light. This method is a direct measurement of absorption, which has practical advantages compared to common optical spectroscopy approaches. In the case of two-dimensional (2D) materials, NMS overcomes limitations inherent to conventional optical methods, such as the complications associated with measurements at high magnetic fields and low temperatures. In this work, we develop a protocol for NMS of 2D materials that yields two orders of magnitude improved sensitivity compared to previous approaches, while being simpler to use. To this end, we use mechanical sample actuation, which simplifies the experiment and provides a reliable calibration for greater accuracy. Additionally, the use of low-stress silicon nitride membranes as our substrate reduces the noise-equivalent power to fW , comparable to commercial semiconductor photodetectors. We use our approach to spectroscopically characterize a 2D transition metal dichalcogenide (WS2), a layered magnetic semiconductor (CrPS4), and a plasmonic super-crystal consisting of gold nanoparticles

    Photothermal Microscopy & Spectroscopy with Nanomechanical Resonators

    Full text link
    In nanomechanical photothermal absorption spectroscopy and microscopy, the measured substance becomes a part of the detection system itself, inducing a nanomechanical resonance frequency shift upon thermal relaxation. Suspended, nanometer-thin ceramic or 2D material resonators are innately highly-sensitive thermal detectors of localized heat exchanges from substances on their surface or integrated into the resonator itself. Consequently, the combined nanoresonator-analyte system is a self-measuring spectrometer and microscope: responding to a substances transfer of heat over the entire spectrum for which it absorbs, according to the intensity it experiences. Limited by their own thermostatistical fluctuation phenomena, nanoresonators have demonstrated sufficient sensitivity for measuring trace analyte as well as single particles and molecules with incoherent light or focused and unfocused coherent light. They are versatile in their design, support various sampling methods and hyphenation with other spectroscopic methods, and are capable in a wide range of applications including fingerprinting, separation science, and surface sciences.Comment: perspective article, 23 pages with references, 7 figure

    Nanomechanical Photothermal Near Infrared Spectromicroscopy of Individual Nanorods

    No full text
    Understanding light-matter interaction at the nanoscale requires probing the optical properties of matter at the individual nanoabsorber level. To this end, we developed a nanomechanical photothermal sensing platform that can be used as a full spectromicroscopy tool for single molecule and single particle analysis. As a demonstration, the absorption cross-section of individual gold nanorods is resolved from a spectroscopic and polarization standpoint. By exploiting the capabilities of nanomechanical photothermal spectromicroscopy, the longitudinal localized surface plasmon resonance in the NIR range is unraveled and quantitatively characterized. The polarization features of the transversal surface plasmon resonance in the VIS range are also analyzed. The measurements are compared with the finite element method, elucidating the role played by electron surface and bulk scattering in these plasmonic nanostructures, as well as the interaction between the nanoabsorber and the nanoresonator, ultimately resulting in absorption strength modulation. Finally, a comprehensive comparison is conducted, evaluating the signal-to-noise ratio of nanomechanical photothermal spectroscopy against other cutting-edge single molecule and particle spectroscopy techniques. This analysis highlights the remarkable potential of nanomechanical photothermal spectroscopy due to its exceptional sensitivity

    Nanomechanical absorption spectroscopy of 2D materials with femtowatt sensitivity

    No full text
    Nanomechanical spectroscopy (NMS) is a recently developed approach to determine optical absorption spectra of nanoscale materials via mechanical measurements. It is based on measuring changes in the resonance frequency of a membrane resonator vs. the photon energy of incoming light. This method is a direct measurement of absorption, which has practical advantages compared to common optical spectroscopy approaches. In the case of two-dimensional (2D) materials, NMS overcomes limitations inherent to conventional optical methods, such as the complications associated with measurements at high magnetic fields and low temperatures. In this work, we develop a protocol for NMS of 2D materials that yields two orders of magnitude improved sensitivity compared to previous approaches, while being simpler to use. To this end, we use mechanical sample actuation, which simplifies the experiment and provides a reliable calibration for greater accuracy. Additionally, the use of low-stress silicon nitride membranes as our substrate reduces the noise-equivalent power to NEP = 890 fW H z − 1 , comparable to commercial semiconductor photodetectors. We use our approach to spectroscopically characterize a 2D transition metal dichalcogenide (WS2), a layered magnetic semiconductor (CrPS4), and a plasmonic super-crystal consisting of gold nanoparticles.</p
    corecore